

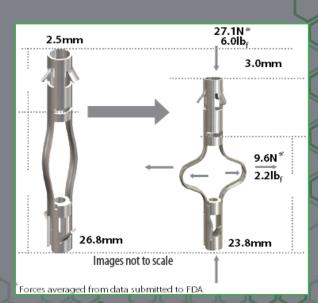
Technical Documents Table of Contents

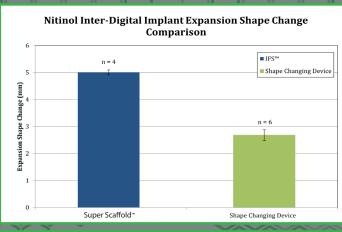
- 1. Unique Design and High Bone Fixation through Expansion Shape Change
- 2. Continuous Compression and High Strength
- 3. Biocompatibility

- 4. High Strength and Instantaneous Compression
- 5. High Pull-Out Strength and Pull-Out Force Increase with Size
- 6. Uniform Compressive Forces with Shape Change and High Failure Force
- 7. High Resistance to Cyclic Loading Failures; Biocompatibility

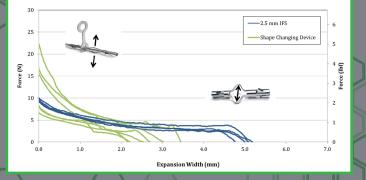
Super Scaffold[™] Intramedullary Fixation Scaffold (IFS[™]) System

Unique Design


The Intramedullary Bone Fixation Scaffold (IFS[™]) for Inter-digital Fusion is a tubular fenestrated intramedullary bone fixation implant and ingrowth scaffold.


- Pairs of distal and proximal wings lock into bone and allow the IFS[™] to be screwed in or out.
- Bulges expand to conform to the inner bone anatomy and shorten the IFS[™]
- IFS[™] shortening pull bones together and compresses the fusion site while healing
- Hollow cylinder and fenestrations allow for bone ingrowth in the IFS[™] and across the fusion site.

High Bone Fixation through Expansion Shape Change

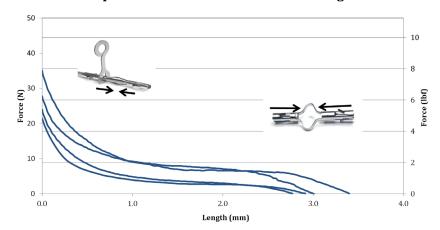

Metric's IFS[™] design exhibits 87% greater expansion shape change when compared to other shape changing hammertoe products on the market, providing superior fixation.

The IFS[™] bone locking force is 9.6N or 2.2lbf.

Expansion Force and Shape Change

A02-007-01 (IR)

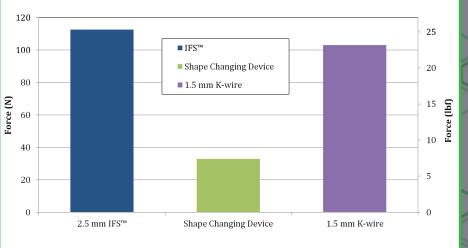
Data submitted to FDA for 510(k)



Super Scaffold[™] Intramedullary Fixation Scaffold (IFS[™]) System

Continuous Compression

The IFS[™] contracting bulge design provides high bone compression force over a wide range of shape change (average 27.1N (6.0 lbf) over 3mm), continuously pulling bones together and compressing the healing interface.

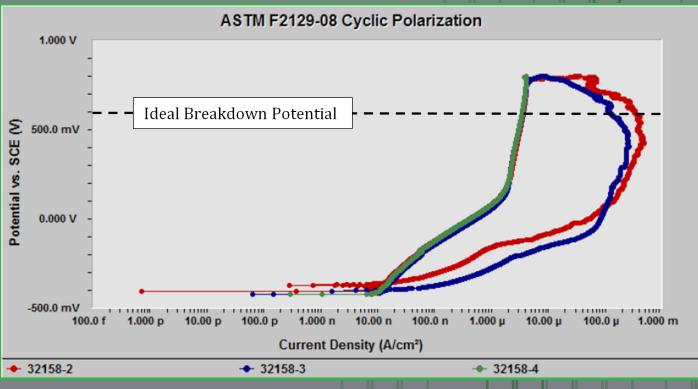

Compression Force and Reduction in Length

High Strength

The tubular design of the IFS[™] exhibits greater bending forces than competitor's shape changing device and K-wires.

4 Point Flexural Bend Testing

Data submitted to FDA for 510(k)


A02-007-01 (IR)

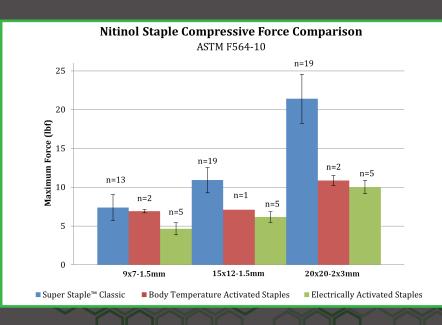
Super Scaffold[™] Intramedullary Fixation Scaffold (IFS[™]) System

Biocompatibility

Higher corrosion resistance and biocompatability are enhanced through the formation of a titanium rich oxide surface on the implant, thus minimizing nickel ion release. All IFS[™] implants tested had a breakdown potential *exceeding* the "ideal" breakdown of 600mV¹.

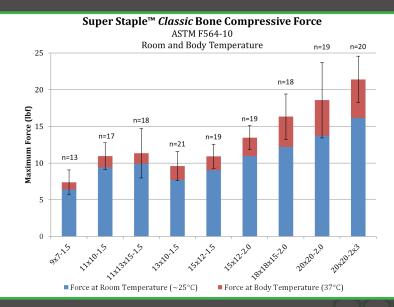
1. Rosenbloom and Corbett, Proceedings of the International Conference on Shape Memory and Superelastic Technologies, May, 2006.

A02-007-01 (IR)


Data submitted to FDA for 510(k)

Super Staple

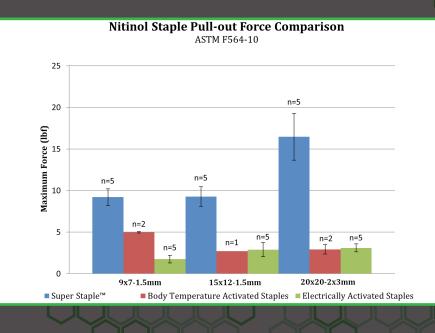
High Strength


Metric's Super Staple™ Classic exhibits 7-113% greater compressive force than body temperature and electrically activated nitinol bone staples.

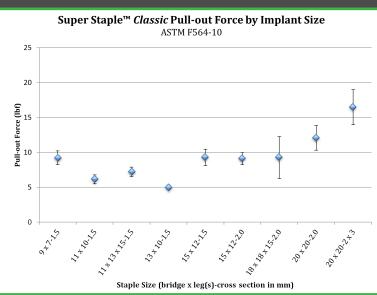
Instantaneous Compression Operatively

Metric's Super Staple™ Classic exerts high instantaneous compressive forces that increase 14 to 35% at body temperature.

Force Created at room temperature and additional force exerted with body heating (red).


Data submitted to FDA for 510(k)

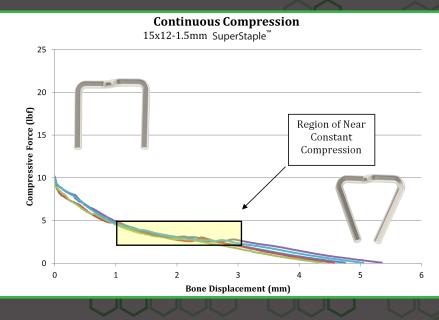
Super StapleTM Nitinol Bone Fixation System


High Pull-Out Strength

Metric's Super Staple[™] Classic has two to six times (2x-6x) higher pull-out force than body temperature activated or electrically activated nitinol staples.

Pull-Out Force Increases with Size

Metric's Super Staple[™] Classic has high pull-out forces that increase with implant size.



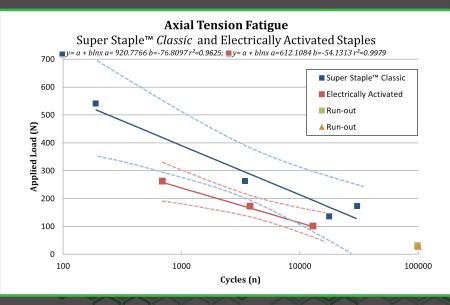
Super StapleTM Nitinol Bone Fixation System

Uniform Compressive Forces with Shape Change

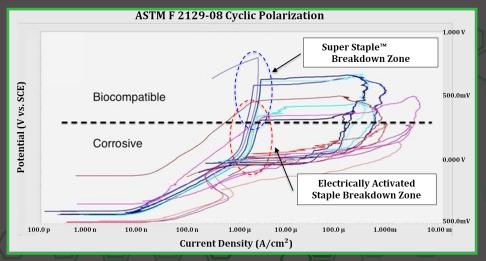
Metric's Super Staple[™] Classic contracting bridge and converging leg design exerts uniform and near constant compressive force over a wide range of shape change.

High Failure Force

Metric's Super Staple[™] Classic (blue) is stiffer, has more shape change and fails at a higher force than electrically activated (red –) nitinol staples.



Super StapleTM Nitinol Bone Fixation System


High Resistance to Cyclic Loading Failures

Metric's Super Staple[™] Classic (blue) on the average withstood 87% more cyclic force (99 lbf) at 10,000 cycles than the electrically activated (red —) staples as illustrated in the fatigue testing curves shown.

Biocompatibility

Metric's Super Staple[™] Classic (6 bine hue curves) biocompatibility is enhanced and nickel ion release is impeded through the use of a titanium rich oxide formed on the implant which provides higher corrosion resistance than tested electrically activated (5 red hue curves) nitinol staples. All six Super Staple[™] Classic implants tested were biocompatible having a breakdown potential over 300 millivolts. Only two of the five electrically activated nitinol staples tested were over the 300 millivolts threshold for biocompatibility.

