
External Fixator with dynamic compression

Bunion MIS Transverse Osteotomy

Fixation is achieved with one 4-pin device or a 2-pin LINK™ with K-Wire

Implantation

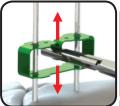
- LINK™ to Bone Pin retention strength is greatest in this order: 20TG, 20TT, then 16TT
- Bone Pin placement through the LINK™ is easiest in the reverse order
- One 20TG is recommended on each side of the fracture, osteotomy or arthrodesis

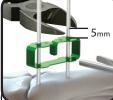
Compression Force Adjustment and Removal

 Compress with needle drivers and slide up to lessen force and remove, or down to increase force

Percutaneous Surgical Technique

Instructions for use


See A04-001-01



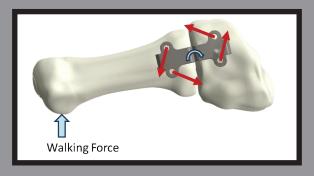
Cut Bone Pins above the top of the LINK™ 5mm or in the 3rd groove in the 20TG Bone Pin

Cover Placement

Removal

Compress with needle drivers, slide off Pins Optional: Cut pins flush before compression

© 2024 Metric Medical Devices, Inc. 846 Silver Springs, Helotes, TX 78023 (830) 535-6300 A04-005-03A U.S. Federal Law restricts this device to sale by or on the order of a physician Patents: U.S. 11,944,352 other patents pending.


LINK™ Biomechanics

- Maximum Compression
 Place bones pin holes
 transverse to fusion
- Shifting and Compression
 Bone Pins angled to the fusion can rotate or shift bones if needed

- Angling Bone Pins or K-wires increase LINK™ retention strength but lessens adjustability
- Pin angulation for narrow structures
 MUST have height above bone set
 during 2 pin placement

- Sagittal plane LINK™ placement engages all 4 Bone Pins simultaneously to resist walking loads
- Load sharing places ¼ of the walking force per pin (560 lbf total load to break a pin)

Comparative Strength

- 2-Pin LINK™ bending forces exceed that of a mini-rail fixator
- Bone Pin bending strength exceeds that of simular size k-wires
- Bone Pin pull out force is equivalent to a mini-rail fixator
- Cyclic fatigue loading resistance exceeds that of tested nitinol staples
- 2-Pin Compressive loads are 15lbf max and 4-Pin are 16lbf max (8lbf per pin) and decreases with increasing LINK™ height above bone